Press releases

Noise affects life on the seafloor

Sounds with low frequencies stress some species of crustaceans, worms and mussels - with potentially far-reaching consequences for marine ecosystems
Amphipods in sediment
Amphipods (Photo: Alfred Wegener Institute / Sheng Wang)

Oceans have their own unique soundscape. Many marine organisms, for example, use sound for echolocation, navigation or communication with conspecifics. In recent decades, however, more and more sounds caused by human activities are permeating the waters. A study by the Alfred Wegener Institute now presents evidence that these sounds affect some invertebrates that live in and on the seafloor in ways that important functions they provide for their ecosystems may be impacted.

Wirbellose Tiere wie Muscheln und Würmer sind regelrechte Ökosystem-Ingenieure. Sie verändern ständig das Sediment in dem sie leben. Durch Graben, Fressen, Lüften und Düngen mit Ausscheidungen sind diese Wühl- und Umwälzaktivitäten entscheidend für die Nährstoffkreisläufe in den Ozeanen: So kann mehr Kohlenstoff aus abgestorbenem, organischen Material im Meeresboden gebunden werden und Nährstoffe zurückgeführt werden.

Steigende Temperaturen, die Versauerung der Ozeane und Schadstoffe setzen Lebewesen mariner Ökosysteme zunehmend unter Stress. In den letzten Jahrzehnten trägt hierzu auch zunehmend Lärm durch menschliche Aktivitäten bei, der das Verhalten, die Nahrungssuche oder die Kommunikation von Tieren im Meer beeinflussen kann. Sprengungen, Ressourcenabbau aber auch das Brummen von Frachtschiffen und Sportbooten dröhnen durch die Ozeane. Dass sich dieser Lärm nicht nur auf Meeressäuger, sondern auch Wirbellose auswirkt, konnte nun ein Forschungsteam des Alfred-Wegener-Instituts, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) in Bremerhaven in einer Studie im Fachmagazin Environmental Pollution zeigen. „Wir haben untersucht, wie Krebse, Muscheln und Würmer am Meeresboden auf niederfrequente Geräusche reagieren und wie häufig und intensiv sie unter Lärmstress das Sediment um- und abbauen können“, sagt Sheng V. Wang vom Fachbereich Biowissenschaften am AWI. Niederfrequente Geräusche sind Schallwellen mit einer Frequenz zwischen 10 und 500 Hertz. Im Wasser können sie über mehrere Kilometer übertragen werden.

Obwohl die Lärmverschmutzung durch niederfrequente Geräusche, die aus menschlichen Aktivitäten stammen, immer weiter zunimmt, war bisher wenig darüber bekannt, wie sich Lärm auf wirbellose Tiere am Meeresboden auswirkt. Um diese Forschungslücke zu schließen, haben die AWI-Wissenschaftler im Labor mit sogenannten „Lärm-Eiern“ untersucht, wie Flohkrebse, Borstenwürmer und Plattmuscheln von Schallwellen mit einer Frequenz zwischen 100 und 200 Hertz beeinflusst werden. „Nach sechs Tagen konnten wir deutlich sehen, dass alle drei Arten auf den Lärm reagierten obwohl sie zu sehr unterschiedlichen Tiergruppen zählen, denen eigentliche Organe zum Hören fehlen“, sagt AWI-Ökologe Dr. Jan Beermann. So gruben die Flohkrebse deutlich weniger und nicht mehr so tief im Sediment. Bei den Borstenwürmer war keine eindeutige Reaktion zu beobachten, sie schienen sich jedoch uneinheitlicher zu verhalten. Für die Plattmuscheln wurden potentielle Stressreaktionen festgestellt, die weiter untersucht werden müssen. Die Forscher weisen auf den dringenden Bedarf an Forschung im Feld hin, da der experimentelle Aufbau unter Laborbedingungen nicht die volle Komplexität umfasst.

Dass zusätzliche Geräusche, die keinen natürlichen Ursprung haben, am Meeresboden lebende Wirbellose hemmen könnten, Sedimente an- und umzubauen, kann sich auf wichtige Funktionen mariner Ökosysteme auswirken – von der Versorgung mit Nährstoffen bis hin zur Verfügbarkeit von Nahrung für Lebewesen auf höheren Ebenen im Nahrungsnetz, wie etwa Fische. „Durch menschliche Aktivitäten könnte es künftig noch ‚lauter‘ am Meeresboden werden. Wir sind grade noch am Anfang zu verstehen, wie genau Lärmprozesse hier wirken“, sagt Beermann. "Diese Zusammenhänge zu verstehen, ist aber ein wichtiger Faktor für eine nachhaltige Nutzung unserer Meere.“ Deshalb will das Team in Zukunft weitere Untersuchungen hierzu durchführen. Unter anderem sollen in einem Projekt zusammen mit europäischen Partnerforschungseinrichtungen Experimente an weiteren AWI-Standorten wie Helgoland und Sylt nähere Erkenntnisse liefern. Die internationale Plattform JPI Oceans fördert das Projekt.

Original publication

Sheng V. Wang, Alexa Wrede, Nelly Tremblay, Jan Beermann: Low-frequency noise pollution impairs burrowing activities of marine benthic invertebrates. Environmental Pollution (2022). DOI: https://doi.org/10.1016/j.envpol.2022.119899.

Contact

Science

Jan Beermann
+49(471)4831-1341

Downloads

Amphipods in sediment
Amphipods occur in high densities in the seabed of the North Sea. (Photo: Alfred Wegener Institute / Sheng Wang)
Digging activities made visible with UV light in the laboratory
Particles glowing under UV light were used to visualize the animals' digging activities. (Photo: Alfred Wegener Institute / Sheng Wang)
Fluorescent particles under the sediment surface in the laboratory
Digging of the animals transports the fluorescent particles below the sediment surface. (Photo: Alfred Wegener Institute / Sheng Wang)
Noise measuring in laboratory containers
So-called "noise-eggs" were used to study how low-frequency noise affects the behavior of seafloor dwellers. (Photo: Alfred Wegener Institute / Sheng Wang)