Ongoing Projects

DAIMON – Decision Aid for Marine Munitions

Dumped Munition in the Baltic Sea pose a potential risk for the environment. In the North and Baltic Sea are containing a legacy of ca. 50 000 tons of dumped chemical munitions and more than 200 000 tons conventional munitions originating from WW I and II. Which chemicals or metabolites are detectable in fish and mussels? Do these chemicals pose a threat for fish and mussels, and how can the dumped munition been managed? These questions are addressed in the research project DAIMON.

Background and Objective

After the 2nd World War, a large amount of chemical weapons and ammunition was dumped in the Baltic Sea and the Skagerrak Strait. Also conventional weapons and munitions lie on the seafloor in different areas of the Baltic Sea as a legacy of the wars. These munitions contain a wide range of hazardous substances. Considering the growing use of the seabed for economic purposes (offshore windfarms, pipelines, etc.), the likelihood of encountering dumped containers with chemical warfare agents or conventional munitions causing direct emissions to the surrounding environment and a risk of human and wildlife exposure is increasing. In addition, the containers and shells are continuously deteriorating due to corrosion. For these reasons there is an ongoing discussion on how to assess and manage the environmental risk of dumped ammunitions, especially in areas where their location is likely to cause a conflict with maritime activities.

DAIMON will focus on the evaluation of risks associated with individual munitions, categorization of threats, and possible remediation methods. Also economical and legal issues will be addressed. Risk assessment/categorization methods will be applied in field studies in the Gulf of Finland, Bornholm and Gdańsk Deeps, Little Belt and Skagerrak to produce examples of evaluation in different regions of the Baltic Sea. As the main result, an easy-to-use software, based on the research carried out within the project, will be presented to stakeholders (maritime administration, environmental agencies, etc.) in the Baltic Sea countries to provide them with a tool for the efficient management of the problem in their respective exclusive economic zones. The tool aims at making the knowledge gained in previous projects related to dumped munitions available to decision makers in the Baltic Sea area.


The AWI will conduct field studies focussing on the assessment of blue mussels and will contribute to fish surveys. In addition, laboratory experiments with model organisms (fish, mussels, flatworms) will be performed. Parameter under investigation will be e.g. diseases, histopathology and toxicity tests of relevant metabolites and induced cellular defence.

EUSBSR Priority Area Secure

EUSBSR Priority Area Secure awarded the concept of DAIMON with the Flagship-Status.

Flexibility matters: Interplay between trait diversity and ecological dynamics using aquatic communities as model systems (DynaTrait) 2015-2018

DFG Priority Programme 1704

Traits that influence the interaction between species are of prime importance for population stability and species coexistence, because variation within these traits will directly determine species fitness and indirectly influence fitness of the interacting partner. In cases of antagonistic interactions including predation and competition variation of these traits will be selectively maintained. Therefore, any attempt in trying to understand diversity-resilience relationships should incorporate the functional variation of species interaction traits of ecosystem keystone species as a mechanistic basis. Here, we propose to investigate the selective maintenance of diversity in allelochemical production, a widespread trait to reduce competition and grazing during blooms of the dinoflagellate Alexandrium ostenfeldii, in relation to abiotic (nutrient limitation and temperature) and biotic (competition and predation) stressors. We will combine field observations, microcosm and chemostat experiments with cyst bed characterization and experimental evolution to link within bloom to between bloom dynamics. We hypothesize that fluctuating selection on allelochemical production and mutualistic interactions between producer and non-producer strains determines population dynamics and maintains diversity during the bloom. Between blooms the large number of compatible and incompatible mating types will be an efficient mechanism to maintain diversity as well as stability of mutualistic interactions. The link between trait diversity and population dynamics during decisive stages of the life cycle will therefore deepen our understanding of the relationship between biodiversity and ecosystem stability.

Further information:

IMCONet 2013-2017

EU: FP7-people-2012-IRSES

IMCONet is an international Research Network that follows an interdisciplinary approach to understand the consequences of Climate Change in coastal Western Antarctica. A Network for Staff Exchange and Training. The project brings European, South American and US scientists together to advance climate and (eco-) system change research at the Western Antarctic Peninsula (WAP), a region of recent rapid aerial warming.

Further Information:

RETCEL 2015-2017


This project investigates the occurrence and distribution of toxigenic plankton between subpolar regions of the South Atlantic and the Southern Ocean and ist correlation to oceanographic and hydrodynamic parameters.



FAABulous 2015-2017

Future Arctic Algal Blooms - and their role in the context of climate change   This project aims at an integrated assessment of the combined effect of these changes (1-3) on algal blooms in sea ice and water at high latitudes, with respect to bloom phenology, efficiency of primary production, nutritional quality and carbon cycling. The suggested approach combines three components: a) Seasonal observations of two high Arctic fjord ecosystems with contrasting environmental conditions (ice-covered vs. ice-free), including analyses of long-term data on physical oceanography and bloom timing (WP1), b) Manipulative experiments to study the effect of multiple stressors on algal communities, and to characterize physiological qualities of species that explain their competitive success under changing climate conditions (WP2), and c) Implementing the newly gained knowledge in a coupled physical-biological model to study potential algal blooms under different scenarios (WP3).

In cooperation with the Norwegian Research Council.

Further Information:

PEACE 2015-2017

1) To assess if exposure to chemical pollution (under realistic, sub-lethal conditions) hinders the adaptive capacity of freshwater phytoplankton communities to restructure following abrupt disturbance events associated to extreme weather conditions. 2) To assess if responses of adaptive capacity hindrance are influenced by the history of community exposure to chemical pollution (as, for example, a result of acquired tolerance or evolution). 3) To investigate the mechanisms underpinning the relationship between patterns and changes of morphological/physiological traits with pollution induced responses of adaptive capacity at population and community level.

In cooperation with the Norwegian Research Council

Further information: ž