Press releases

Atmospheric blocking slows ocean-driven melting of Greenland’s largest glacier tongue

Processes in the atmosphere are cooling the Atlantic seawater flowing into the ice cavern beneath Northeast Greenland’s 79° N Glacier
Mehrere atmosphärische Blockierungswetterlagen über Europa verstärkten, dass kalte Luft von der Arktis durch die Framstraße ins Europäische Nordmeer hineinströmt.
Mehrere atmosphärische Blockierungswetterlagen über Europa verstärkten, dass kalte Luft von der Arktis durch die Framstraße ins Europäische Nordmeer hineinströmt. (Photo: Alfred-Wegener-Institut / Rebecca McPherson)

Northeast Greenland is home to the 79° N Glacier – the country’s largest floating glacier tongue, but also one seriously threatened by global warming: warm water from the Atlantic is melting it from below. Experts from the Alfred Wegener Institute have however now determined that the temperature of the water flowing into the glacier cavern declined from 2018 to 2021, even though the ocean has steadily warmed in the region over the past several decades. This could be due to temporarily changed atmospheric circulation patterns. In a study just released in the journal Science, the researchers discuss how this affects the ocean and what it could mean for the future of Greenland’s glaciers.

In den letzten Jahrzehnten hat der grönländische Eisschild immer mehr seiner Masse und damit auch an Stabilität verloren. Hauptursache ist die Erwärmung der Atmosphäre und der Ozeane, die das Schmelzen der Eismassen beschleunigt, was zunehmend zum Anstieg des mittleren globalen Meeresspiegels beiträgt. Alleine der nordostgrönländische Eisstrom, der den massiven Nioghalvfjerdsfjorden Gletscher speist, auch bekannt als 79° N-Gletscher, könnte den globalen Meeresspiegel um gut einen Meter steigen lassen, wenn er komplett abschmilzt. 

Unter der Gletscherzunge befindet sich eine Kaverne, in die Ozeanwasser einfließt. Messungen des Alfred-Wegener-Instituts, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) haben nun ergeben, dass die Temperatur des Wassers, das in die Kaverne fließt, zwischen 2018 und 2021 abgenommen hat. „Die abrupte Abkühlung hat uns überrascht, denn sie steht im krassen Gegensatz zu der langfristigen regionalen Ozeanerwärmung, die wir im Zustrom zum Gletscher gemessen haben“, sagt Dr. Rebecca McPherson, Wissenschaftlerin am AWI und Hauptautorin der Studie. „Dass das Ozeanwasser in der Gletscherkaverne kälter wird, bedeutet, dass in diesem Zeitraum weniger ozeanische Wärme unter das Eis transportiert wurde. Das führt wiederum dazu, dass der Gletscher weniger schnell abschmilzt.“

Doch woher kommt das kalte Wasser unter dem Gletscher, wenn die Temperatur des Ozeans um ihn herum immer weiter steigt? Um das herauszufinden haben die AWI-Forschenden über fünf Jahre lang zwischen 2016 und 2021 Daten gesammelt, mithilfe einer ozeanographischen Verankerung. Diese Messplattform zeichnete kontinuierlich Eigenschaften wie die Temperatur und die Strömungsgeschwindigkeit des Ozeanwassers an der Kalbungsfront des 79° N-Gletschers auf, dort wo das Wasser in die Kaverne fließt. Während die Temperaturen des Atlantischen Wassers zu Beginn der Messungen zunächst kontinuierlich bis auf einen Höchstwert von 2,1 Grad Celsius im Dezember 2017 anstiegen, sanken sie jedoch ab Anfang 2018 um 0,65 Grad ab. 

„Wir konnten den Ursprung dieser temporären Abkühlung zwischen 2018 und 2021 stromaufwärts in die Framstraße und das weite Europäische Nordmeer zurückverfolgen“, erklärt Rebecca McPherson. „Das heißt, dass sich Veränderungen in den Zirkulationen dieser entfernten Meeresregionen direkt auf das Schmelzen des 79° N-Gletschers auswirken können.“ Dass sich die Wassertemperatur in der Framstraße abgekühlt hat, liegt an atmosphärischen Blockierungen. Bei diesen zwingen stationäre Hochdruckgebiete in der Atmosphäre die normalerweise vorherrschenden Luftströmungen zum Ausweichen. Das ist auch über der Framstraße passiert: Mehrere atmosphärische Blockierungswetterlagen über Europa verstärkten, dass kalte Luft von der Arktis durch die Framstraße ins Europäische Nordmeer hineinströmt. Dies bremste das Wasser aus dem Atlantik ab, das Richtung Arktis strömte und sich so auf seinem Weg stärker als normal abkühlte. Dieser abgekühlte Wasserkörper strömte dann durch die Framstraße zum grönländischen Kontinentalschelf und den 79° N-Gletscher. Es dauerte zwei bis drei Jahre von dem Auftreten der Blockierungslagen in der Atmosphäre bis zum Einströmen des kühleren Wassers aus dem Atlantik in die Gletscherkaverne. 

„Wir gehen davon aus, dass atmosphärische Blockierungslagen auch in Zukunft ein wichtiger Faktor für mehrjährige Abkühlungsphasen des Europäischen Nordmeers bleiben werden“, so Rebecca McPherson. „Sie schaffen die atmosphärischen und ozeanischen Bedingungen, welche die Temperaturvariabilität des atlantischen Ozeanwassers beeinflussen, die sich auch auf die Gletscher Nordostgrönlands auswirkt.“ Denn dieser nordwärts strömende Wasserkörper fließt nicht nur weiter in die Arktis, wo er die Ausdehnung und Dicke des Meereises beeinflusst. Etwa die Hälfte des Wassers biegt bereits in der Framstraße nach Westen ab, wo es das ozeanbedingte Schmelzen der grönländischen Gletscher kontrolliert. „Wir werden im Sommer 2025 mit dem Forschungseisbrecher Polarstern zum 79° N-Gletscher zurückkehren. Wir wissen bereits, dass die Wassertemperaturen in der Framstraße wieder leicht zugenommen haben und sind gespannt zu sehen, ob sich dadurch das Abschmelzen des Gletschers verstärkt hat.“

Um das Schicksal des 79° N-Gletschers in der Zukunft besser vorhersagen zu können, ist es wichtig zu verstehen, was die Veränderungen im Gletscher antreibt, wie Rebecca McPherson betont: „Unsere Studie liefert neue Erkenntnisse über das Verhalten der Gletscher Nordostgrönlands in einem sich verändernden Klima. Dadurch können Prognosen für den Anstieg des Meeresspiegels verfeinert werden.“ Ihr Kollege Prof. Torsten Kanzow vom AWI ergänzt: „Insgesamt verstehen wird den Warmwassereinstrom in die Kaverne des 79° N-Gletschers als einen Teil der Atlantischen Meridionalen Umwälzzirkulation (AMOC). Prognosen legen nahe, dass sich dieses Wärmeförderband in der Zukunft abschwächen könnte. Es wir eine wichtige Herausforderung sein, langfristige Beobachtungssysteme zu etablieren, welche die Auswirkungen der großräumigen Ozeanzirkulation bis hinein in die Fjorde Grönlands erfassen können.“

Original publication

Rebecca Adam McPherson, Claudia Wekerle, Torsten Kanzow, Monica Ionita, Finn Ole Heukamp, Ole Zeising, Angelika Humbert, Atmospheric blocking slows ocean-driven melting of Greenland’s largest glacier tongue, Science. 2024. DOI: 10.1126/science.ado5008

Contact

Science

Rebecca McPherson
+49(471)4831-2161

Science

Torsten Kanzow
+49(471)4831-2913

Press Office

Sarah Werner
+49 471 4831 2008

Downloads

Mehrere atmosphärische Blockierungswetterlagen über Europa verstärkten, dass kalte Luft von der Arktis durch die Framstraße ins Europäische Nordmeer hineinströmt.
Mehrere atmosphärische Blockierungswetterlagen über Europa verstärkten, dass kalte Luft von der Arktis durch die Framstraße ins Europäische Nordmeer hineinströmt. (Photo: Alfred-Wegener-Institut / Rebecca McPherson)
AWI-Forschende haben über fünf Jahre lang zwischen 2016 und 2021 mit einer ozeanographischen Verankerung Daten wie die Temperatur und die Strömungsgeschwindigkeit des Ozeanwassers an der Kalbungsfront des 79 N-Gletschers gesammelt.
AWI-Forschende haben über fünf Jahre lang zwischen 2016 und 2021 mit einer ozeanographischen Verankerung Daten wie die Temperatur und die Strömungsgeschwindigkeit des Ozeanwassers an der Kalbungsfront des 79 N-Gletschers gesammelt. (Photo: Alfred-Wegener-Institut / Rebecca McPherson)
Mehrere atmosphärische Blockierungswetterlagen über Europa verstärkten, dass kalte Luft von der Arktis durch die Framstraße ins Europäische Nordmeer hineinströmt. Dies bremste das Wasser aus dem Atlantik ab, das Richtung Arktis strömte und sich so auf seinem Weg stärker als normal abkühlte. Dieser abgekühlte Wasserkörper strömte dann durch die Framstraße zum grönländischen Kontinentalschelf und den 79° N-Gletscher.
Mehrere atmosphärische Blockierungswetterlagen über Europa verstärkten, dass kalte Luft von der Arktis durch die Framstraße ins Europäische Nordmeer hineinströmt. Dies bremste das Wasser aus dem Atlantik ab, das Richtung Arktis strömte und sich so auf seinem Weg stärker... (Graphic: Alfred-Wegener-Institut / Rebecca McPherson)
Im Nordosten Grönlands befindet sich der 79 N-Gletscher. Unter der Gletscherzunge befindet sich eine Kaverne, in die Ozeanwasser aus dem Atlantik einfließt. Messungen AWI haben nun gezeigt, dass die Temperatur des Wassers, das in die Kaverne fließt, zwi
Im Nordosten Grönlands befindet sich der 79 N-Gletscher. Unter der Gletscherzunge befindet sich eine Kaverne, in die Ozeanwasser aus dem Atlantik einfließt. Messungen AWI haben nun gezeigt, dass die Temperatur des Wassers, das in die Kaverne fließt, zwischen 2018 und 20... (Photo: Alfred-Wegener-Institut / Rebecca McPherson)
79° North Glacier
DE: 79 Grad Nord Gletscher EN: 79° North Glacier (Photo: Alfred-Wegener-Institut / Lars Grübner)
79°N Gletscher
DE: Massive Spaltenregionen vom 79°N Gletscher, der im Nordosten von Grönland liegt, aufgenommen im Juli 2018. EN: Massive crevasse fields at 79°N Glacier, northeast Greenland in July 2018. (Photo: Alfred-Wegener-Institut / Ole Zeising)