Press releases

Arctic ice algae heavily contaminated with microplastics

Melosira arctica has ten times higher concentration of plastic particles than surrounding seawater
Melosira Arctica
Melosira Arctica (Photo: Alfred Wegener Institute / Julian Gutt)

The alga Melosira arctica, which grows under Arctic sea ice, contains ten times as many microplastic particles as the surrounding seawater. This concentration at the base of the food web poses a threat to creatures that feed on the algae at the sea surface. Clumps of dead algae also transport the plastic with its pollutants particularly quickly into the deep sea - and can thus explain the high microplastic concentrations in the sediment there. Researchers led by the Alfred Wegener Institute have now reported this in the journal Environmental Science and Technology.

Sie ist ein Futterfahrstuhl für die Bodenlebewesen in der Tiefsee: Die Alge Melosira arctica wächst in den Frühlings- und Sommermonaten mit rasantem Tempo unter dem Meereis und bildet dort meterlange Zellketten. Sterben die Zellen ab und schmilzt das Eis, an dessen Unterseite sie haften, verkleben sie zu Klumpen, die innerhalb eines einzigen Tages mehrere tausend Meter bis auf den Grund der Tiefsee sinken können. Dort bilden sie eine wichtige Nahrungsquelle für die bodenlebenden Tiere und Bakterien. Neben der Nahrung transportieren die Aggregate jedoch mittlerweile auch eine bedenkliche Fracht mit in die arktische Tiefsee: Mikroplastik. Das hat ein Forschungsteam um die Biologin Dr. Melanie Bergmann vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) jetzt in der FachzeitschriftEnvironmental Science and Technology veröffentlicht.

„Wir haben endlich eine plausible Erklärung dafür gefunden, warum wir auch im Tiefseesediment immer im Bereich des Eisrandes die größten Mengen von Mikroplastik finden“, berichtet Melanie Bergmann. Bisher wussten die Forschenden aus früheren Messungen lediglich, dass sich Mikroplastik bei der Meereisbildung im Eis aufkonzentriert und beim Schmelzen an das umgebende Wasser abgegeben wird. „Die Algen befördern Mikroplastik auf direktem Weg mit nach unten zum Meeresboden, darum messen wir unter der Eiskante höhere Mikroplastikmengen. Normalerweise sinken die als Meeresschnee bezeichneten Aggregate aus Algenresten langsamer und werden von Wasserströmungen seitwärts abgetrieben, so dass der Meeresschnee weiter weg landet“, erläutert die AWI-Biologin.

Auf einer Expedition mit dem Forschungsschiff Polarstern sammelte sie im Sommer 2021 mit einem Forschungsteam von Eisschollen aus Proben von Melosira-Algen und dem Umgebungswasser. Diese analysierten die Partner von Dalhousie University, Kanada, und University of Canterbury, Neuseeland, anschließend im Labor auf den Gehalt von Mikroplastik. Das überraschende Ergebnis: Die Algenklumpen enthielten mit durchschnittlich 31.000 ± 19.000 Mikroplastikpartikel pro Kubikmeter etwa zehnmal so hohe Konzentrationen wie das Umgebungswasser. „Die fädigen Algen haben eine schleimig-klebrige Textur, so dass sie möglicherweise Mikroplastik aus atmosphärischen Niederschlägen, dem Meerwasser selbst, dem umgebenden Eis und jeder anderen Quelle, der sie begegnen, einsammeln. Einmal im Algenschleim gefangen fahren sie wie in einen Aufzug zum Meeresboden, oder werden von Meerestieren gefressen“, erklärt Deonie Allen von der University of Canterbury und der Birmingham University, die zum Forschungsteam gehört.

Da die Eisalgen eine wichtige Nahrungsquelle für viele Tiefseebewohner darstellen, könnte das Mikroplastik so in das dortige Nahrungsnetz gelangen. Aber auch an der Meeresoberfläche bildet es eine wichtige Nahrungsquelle und könnte erklären warum Mikroplastik besonders stark unter eis-assoziierten Zooplankton-Organismen verbreitet war, wie eine frühere Studie unter AWI-Beteiligung zeigt. Auf diesem Weg kann es auch hier in die Nahrungskette gelangen, wenn das Zooplankton von Fischen wie Polardorsch und diese von Seevögeln, Robben und diese wiederum von Eisbären gefressen werden.

Die detaillierte Analyse der Plastikzusammensetzung zeigte, dass eine Vielzahl verschiedener Kunststoffe in der Arktis vorkommt, darunter Polyethylen, Polyester, Polypropylen, Nylon, Akryl und viele mehr. Zuzüglich verschiedener Chemikalien und Farbstoffe entsteht so ein Stoff Mix, dessen Auswirkungen auf Umwelt und Lebewesen schwer einzuschätzen ist. „Gerade die Menschen in der Arktis sind für ihre Proteinversorgung besonders auf das marine Nahrungsnetz angewiesen, beispielsweise durch die Jagd oder Fischerei. Das heißt, dass sie auch dem darin enthaltenen Mikroplastik und Chemikalien ausgesetzt sind. Mikroplastik wurde bereits in menschlichen Darm, Blut, Venen, Lungen, Plazenta und Brustmilch nachgewiesen und kann Entzündungsreaktionen hervorrufen, doch die Folgen sind insgesamt noch kaum erforscht“, berichtet Melanie Bergmann. „Mikro- und Nanoplastik wurden im Grunde überall dort nachgewiesen, wo Forschende im menschlichen Körper und einer Vielzahl anderer Arten nachgeforscht haben. Es ist bekannt, dass sie das Verhalten, das Wachstum, die Fruchtbarkeit und die Sterblichkeitsrate von Organismen verändern, und viele enthaltene Chemikalien sind nachweislich schädlich für den Menschen“, ergänzt Steve Allen vom Ocean Frontiers Institut der Dalhousie University, ein Mitglied des Forschungsteams.

Außerdem ist das arktische Ökosystem durch die tiefgehenden Umwälzungen der Umwelt durch die Erderhitzung ohnehin schon bedroht. Sind die Organismen nun noch zusätzlich Mikroplastik und den enthaltenen Chemikalien ausgesetzt, kann es sie weiter schwächen. „Hier kommen also verschiedene planetare Krisen zusammen, gegen die wir dringend effektiv vorgehen müssen. Wissenschaftliche Berechnungen haben gezeigt, dass sich die Plastikverschmutzung am wirksamsten durch eine Minderung der Produktion von neuem Plastik verringern lässt“, sagt die AWI-Biologin und ergänzt: „Dies sollte darum auch unbedingt priorisiert werden in dem zurzeit verhandelten globalen Plastikabkommen.“ Darum begleitet Melanie Bergmann auch die nächste Verhandlungsrunde, die Ende Mai in Paris beginnt.

Original publication

Bergmann, M., Allen, S., Krumpen, T., Allen, D., 2023. High levels of microplastics in the Arctic ice alga Melosira arctica, a vector to ice-associated and benthic food webs. Environmental Science and Technology. DOI: https://doi.org/10.1021/acs.est.2c08010

Downloads

Melosira Arctica
Macroscopic growth of Melosira arctica attached to the under-surface of sea ice (Photo: Alfred Wegener Institute / Julian Gutt)
Melosira arctica
Under the light microscope, the long chains of the unicellular algae become visible. The algae appear orange-brown because of their typical pigment fucoxanthin, which enables them to photosynthesize even in low light. (Photo: Alfred Wegener Institute / Madlen Franze)
Melosira arctica
Under the light microscope, the long chains of the unicellular algae become visible. The algae appear orange-brown because of their typical pigment fucoxanthin, which enables them to photosynthesize even in low light. (Photo: Alfred Wegener Institute / Madlen Franze)
ROV
ROV underneath the ice with patches of Melosira algae (Photo: Alfred Wegener Institute / Lianna Nixon)
Eisalge Melosira arctica and microplastic
Melanie Bergmann takes a water sample. On a Polarstern expedition in the Arctic, researchers led by biologist Melanie Bergmann from the Alfred Wegener Institute are investigating how much microplastic is in aggregates of the ice alga Melosira arctica and the seawater di... (Photo: Alfred Wegener Institute / Deonie Allen)
Polarstern in the Arctic
On a Polarstern expedition in the Arctic, researchers led by biologist Melanie Bergmann from the Alfred Wegener Institute are investigating how much microplastic is in aggregates of the ice alga Melosira arctica and the seawater directly next to ice floes. (Photo: Alfred Wegener Institute / Melanie Bergmann)
Melosira arctica and microplastics
Microscopic image of the ice alga Melosira arctica, which forms long chains. On a Polarstern expedition in the Arctic, researchers led by biologist Melanie Bergmann from the Alfred Wegener Institute are investigating how much microplastic is in aggregates of the ice al... (Photo: Alfred Wegener Institute / Alexandra Kraberg)
On the ice floe
On a Polarstern expedition in the Arctic, researchers led by biologist Melanie Bergmann from the Alfred Wegener Institute are investigating how much microplastic is in aggregates of the ice alga Melosira arctica and the seawater directly next to ice floes. (Photo: Alfred Wegener Institute / Mario Hoppmann)
On the ice floe
On a Polarstern expedition in the Arctic, researchers led by biologist Melanie Bergmann from the Alfred Wegener Institute are investigating how much microplastic is in aggregates of the ice alga Melosira arctica and the seawater directly next to ice floes. (Photo: Alfred Wegener Institute / Mario Hoppmann)
On the ice floe
On a Polarstern expedition in the Arctic, researchers led by biologist Melanie Bergmann from the Alfred Wegener Institute are investigating how much microplastic is in aggregates of the ice alga Melosira arctica and the seawater directly next to ice floes. (Photo: Alfred Wegener Institute / Mario Hoppmann)
Melosira arctica and microplastics
On a Polarstern expedition in the Arctic, researchers led by biologist Melanie Bergmann from the Alfred Wegener Institute are investigating how much microplastic is in aggregates of the ice alga Melosira arctica and the seawater directly next to ice floes. (Photo: Alfred Wegener Institute / Melanie Bergmann)
Melosira arctica and microplastics
On a Polarstern expedition in the Arctic, researchers led by biologist Melanie Bergmann from the Alfred Wegener Institute are investigating how much microplastic is in aggregates of the ice alga Melosira arctica and the seawater directly next to ice floes. (Photo: Alfred Wegener Institute / Melanie Bergmann)