Thomas Laepple

Quantitiative interpretation of paleoclimate data

I enjoy to work across disciplines and to combine observational data, statistics and modeling. My current research focus is the estimation of climate variability and the mean temperature changes in the current warm period, the Holocene. This knowledge is relevant for predicting the spread of future climate changes and allows a direct test of climate models.

In the ECUS project, I’m coordinating a small team of researchers and students and work on a better use of the paleoclimate record to sharpen our knowledge about the climate system.

Thomas Münch

Interpretation of temperature signals derived from ice cores

Ice cores are a key archive to reconstruct millennial-scale climate changes in temperature, but are, due to the inherent noise levels of the proxy data, less reliable in recording the smaller Holocene climate variations. However, quantitative knowledge of the natural Holocene polar climate variability is a key to determine the range of plausible future anthropogenic climate change.

My Ph.D. project aims at improving our understanding of the climate signal and the
non-climate variability recorded in water isotopes from polar ice cores. Currently, I use extensive isotope data obtained from the two-dimensional sampling of snow trenches at Kohnen station, Antarctica, to disentangle these two contributions. Of my work I particularly like to combine the observations with statistical modeling and numerical  approaches to understand the physics of the ice-core proxy recorder system.

Maria Reschke

Andrew Dolman